
1

LAB 4 - TASK 8 through TASK 9

Simple Calculator / C Library Calls

John Dempsey

COMP-232: Programming Languages

California State University, Channel Islands

February 17, 2025

Hard Due Date: February 26, 2025

In Lab 4, we will complete the following tasks:

1. Task 8 – Simple Calculator

2. Task 9 – C Library Calls

TASK 8. Implement a Simple Calculator

 Using Function Pointers

Review sample.c below. Your program should be similar to myCaller() calls.

Once you understand what the program is doing, create a new file called calc.c

which implements a simple calculator. The calculator will perform the four basic

arithmetic operations: +, -, *, and /. The program should prompt the user for the

operation to perform in an endless loop. For example:

calc> 3 + 6

9

calc>

You must implement the calculator such that there is one calc function which

takes as arguments the numerical value of the two operands and a pointer to the

specified function (add for +, etc.), plugs the two values into the referenced

function, and returns your result.

Your program should work independent of spaces in the input. For instance, both

1+2 and 1 + 2 should work. This is actually very easy to do with scanf. Check out

its manual page (i.e., man fscanf).

2

john@oho:~/LAB4/CALC$ cat c.c  Sample Program To Understand

#include <stdio.h>

void myProc(int);

void myProc2(int);

void myCaller(void (*)(int), int);

int main(void) {

 myProc(1); // Call myProc with argument 1

 myProc2(2); // Call myProc with argument 2

 myCaller(myProc, 3); // Call myProc with argument 3

 myCaller(myProc2, 4); // Call myProc with argument 4

 return 0;

}

void myCaller(void (*f)(int), int param) {

 (*f)(param); // call function *f with param

}

void myProc(int d) {

 printf("In myProc().\tParameter = %d\n", d);

}

void myProc2(int d) {

 printf("In myProc2().\tParameter = %d\n", d);

}

john@oho:~/LAB4/CALC$ gcc c.c; a.out

In myProc(). Parameter = 1

In myProc2(). Parameter = 2

In myProc(). Parameter = 3

In myProc2(). Parameter = 4

3

TASK 9. C Library Calls

The purpose of this assignment is to practice using additional library calls in a

program. The library calls are defined in assert.h, ctype.h, stdlib.h, string.h, and

time.h. These are commonly used library calls.

This is an open assignment meaning you can write a program to do anything you

like so long as you use at least once each of the C library functions listed below.

To receive full credit, you need to implement each of the library calls below at

least once in your program.

assert.h

assert

ctype.h

isalnum islower tolower
isdigit isupper toupper

stdlib.h

atof calloc malloc system

atoi free realloc

string.h
strcat strcpy strncat strstr

strchr strerror strncmp strtok
strcmp strlen strncpy

time.h

asctime difftime localtime sleep

4

Here are examples of what to code for each function call. You can code your

own examples if you like.

assert.h

• assert → Validate that 10+20 is equal to 18 + 12.

ctype.h

• isalnum → Check how many alphanumeric characters are in this string:

Pass==Word$123

• islower / isupper → Count lowercase vs uppercase letters in

Pass==Word$123

• tolower / toupper → Convert the string Pass==Word$123 to all lowercase

and then to all uppercase.

• isdigit → Count number of digits in the string Pass==Word$123

stdlib.h

• atoi / atof → Convert string input (e.g., 1234 and 56.78) into integer and

floating-point number, then print the integer and floating-point number.

• malloc, calloc, realloc, free → Allocate 8192 bytes of memory using malloc,

then allocate 4096 of initialized memory using calloc, double the size for

one of the memory segments created, then free both memory segments.

• system → Run a system command (e.g., system("clear; ls -l") on Linux to

clear screen and list all files in the current directory).

string.h

• strlen → Print out the string length for “CSUCI – California State University

Channel Islands”.

• strcpy / strncpy → Copy the string “CSUCI – California State University

Channel Islands” into string, then use strncpy to extract just CSUCI.

• strcat / strncat → Use strncat to copy the string “apple” from the string

“apple pie”, then use strcat to append “ tree” to the string to print “apple

tree”.

• strcmp / strncmp → Compare the strings CSUCI and CSULB, and print out if

they match or not. Then compare the first three characters of CSUCI with

CSU and print out if these two strings match.

5

• strchr → Find the first occurrence of ‘A’ in “TODAY’S THE DAY!”

• strstr → Search for a word in the string. Find “DAY” in “TODAY’S THE DAY!”

• strtok → Tokenize a sentence into words. Print out all tokens in the

following string: Tokenization is a process of converting input text into

smaller units.

• strerror → Open a file that doesn’t exist. Pass errnum to strerror to print

out a description of the error.

time.h

• time, localtime, asctime → Use these three functions to print the current

local date/time in the following format:

 MM/DD/YYYY hh:mm

where MM is month, DD is day, YYYY is year, hh is hour, and mm is minutes,

e.g., 02/26/2025 15:30 or 02/26/2025 03:30 PM

• difftime → Show how many seconds elapsed between two actions

(start/end).

• sleep → Pause program for 4 seconds.

